J-stability in non-archimedean dynamics
نویسندگان
چکیده
Let C v be a complete, algebraically closed non-archimedean field, and let f ∈ ( z ) rational function of degree d ≥ 2 . If satisfies bounded contraction condition on its Julia set, we prove that small perturbations have dynamics conjugate to those their sets.
منابع مشابه
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملWandering Domains in Non-archimedean Polynomial Dynamics
We extend a recent result on the existence of wandering domains of polynomial functions defined over the p-adic field Cp to any algebraically closed complete non-archimedean field CK with residue characteristic p > 0. We also prove that polynomials with wandering domains form a dense subset of a certain one-dimensional family of degree p + 1 polynomials in CK [z]. Given a rational function φ ∈ ...
متن کاملDynamics of non-archimedean Polish groups
A topological group G is Polish if its topology admits a compatible separable complete metric. Such a group is non-archimedean if it has a basis at the identity that consists of open subgroups. This class of Polish groups includes the profinite groups and (Qp, +) but our main interest here will be on non-locally compact groups. In recent years there has been considerable activity in the study o...
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملStability of Functional Equations in Non-archimedean Spaces
A classical question in the theory of functional equations is the following: “When is it true that a function which approximately satisfies a functional equation E must be close to an exact solution of E?” If the problem accepts a solution, we say that the equation E is stable. The first stability problem concerning group homomorphisms was raised by Ulam [30] in 1940. We are given a group G and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2022
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2022.108204